Question 1. $(39=(6 \times 3)+(2 \times 3)+(2 \times 3)+(3 \times 3)$ points $)$
(a) What are the types of the following expressions?

- (1.5, ("3", [4,5]))
- [[1,2],nil, [3]]
- $[(2,3.5),(4,5.5)]$
- ([\#"a",\#"b"],[ni1, [true]])
- [SOME (), NONE]
- ($\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}, \mathrm{fn}(\mathrm{x}, \mathrm{y}) \Rightarrow \mathrm{x}^{\wedge} \mathrm{y}$)
(b) Consider the function definition

$$
\begin{aligned}
\text { fun } f(0, y) & =y \\
\mid f(x, y) & =f(x-1, x * y) ;
\end{aligned}
$$

- What is the type of f ?
- What is the value of $f(2,3)$?
(c) Consider the function definition

$$
\begin{aligned}
& \text { fun } g[]=[] \\
& \quad \mathrm{g}(\text { (NONE:: xs })=\mathrm{g} \mathrm{xs} \\
& \mathrm{~g}((\text { SOME x }):: \mathrm{xs})=\mathrm{x}::(\mathrm{g} \mathrm{xs})
\end{aligned}
$$

- What is the type of g ?
- What is the value of g [NONE, (SOME 1, (SOME 2, NONE]?
(d) Consider the function definition

```
fun h [] ys = ys
    | h (x::xs) ys = x::(h xs ys);
```

- What is the type of h ?
- What is the value of $h[1,2][3,4]$?
- What is the value of let val $k=h[2]$ in $k[1]$ end?

Question 2. ($13=3+4+6$ points) Suppose that x and y are expressions of type bool.
(a) Write an expression that has the same value as x andalso y , except that it uses only if-then-else.
(b) Write an expression that has the same value as x orelse y , except that it uses only case.
(c) Define a function all of type bool list \rightarrow bool such that all $x s$ is true iff all of the elements of xs are true (and thus all xs is false if at least one of the elements of $x s$ is false).

Question 3. ($14=4+10$ points) Consider the following binary tree datatype: datatype 'a btree $=$ Empty | Node of 'a * 'a btree * 'a btree;
(a) Give an example element of type int btree that has two nodes.
(b) Write a function sumprod of type int btree \rightarrow (int * int) such that, if t is a binary tree, then sum t is a pair (s, p), where s is the sum of all values in t and p is the product of all values in t.

Question 4. (16 points) Let us say that x is a tiny integer if $0 \leq x \leq 99$. The following code implements a sumlist function of type int list $->$ int that takes a list of tiny integers and returns the sum, except that 99 is used in case of overflow:

```
exception Dverflow;
fun sum(x,y) =
    let val s = x + y in
        if s< 100 then s else raise Overflow
    end;
fun sumlist xs =
    let fun slist [] = 0
        | slist (x::xs) = sum(x, slist xs)
    in
        slist xs handle Overflow => 99
    end;
```

Suppose we eliminate the exception Overflow and rewrite the sum function to return an int option instead:

```
fun \(\operatorname{sum}(x, y)=\)
    let val s = x + y in
        if \(s<100\) then SOME \(s\) else NONE
    end;
```

Modify the definition of sumlist accordingly so that it uses the new version of sum. (Fint: modify the local function slist so that it returns an int option as well.)

