
CSci 148, Spring 2002, Exam 1

Question 1. (39 = (6 x 3) + (2 x 3) + (2 x 3) + (3 x 3) points)

(a) What are the types of the following expressions?

(1.5,("3",C4,51))
"1,21 ,nil, C311
[(2,3.5) ,(4,5.5)1
([#"a" ,#"b"l , [nil, [true]])
[SOME 0, NONE]
(fn x => x, fn (x,y) => x-y)

(b) Consider the function definition

fun f (O,y) = y
I f(x,y) = f(x-l,x*y);

a What is the type o f f ?
a What is the value of f (2 , 3) ?

(c) Consider the function definition

I g (NONE: :xs) = g xs
I g ((SOME x) : : x s) = x: : (g xs)

fun g [I = [I

a What is the type of g?
What is the value of g [NONE, (SOME 1, [SOME 2, NONE]?

(d) Consider the function definition
fun h [I y s = ys

I h (x::xs) ys = x::(h xs ys);

a What is the type of h?
a What is the value of h C1,21 C3,41?

What is the value of l e t V a l k = h [21 in k [I] end?

Question 2. (13 = 3 + 4 + G points) Suppose that x and y are expressions of type bool.

(a) Write an expression that has the same value as x andalso y, except that it uses
only if-then-else.

(13) Write an expression that has the same value as x ore lse y, except, that it uses
only case.

(c) Define a functioball of type bool l i s t -> bool such that a l l xs is t r u e iff
all of the elements of xs are t r u e (and thus all xs is f a l s e if at least one of the
elements of xs is fa l se) .

Question 3. (14 = 4 + 10 points) Consider the following binary tree datatype:

datatype 'a bt ree = Empty I Node of 'a * 'a b t ree * 'a b t r ee ;

(a) Give an example element of type i n t b t ree that has two nodes.

(b) Write a function sumprod of type i n t b t ree -> (i n t * i n t) such that, if t is
a binary tree, then sum t is a pair (s , p) , where s is the sum of all values in t
and p is the product of all values in t.

2

Question 4. (16 points) Let us say that z is a tiny integer if 0 5 m 5 99. The following
code implements a sumlist function of type int list -> int that takes a list of tiny
int,egers and returns the sum, except that.99 is used in case of overflow:

exception Overflow;
fun sum(x,y) =

let val s = x t y in

end;

let fun slist [I = 0

in

end ;

if s < 100 then s else raise Overflow

fun sumlist xs =

I slist (x::xs) = sum(x, slist xs)

slist xs handle Overflow => 99

Suppose we eliminate the exception Overflow and rewrite the sum function to return
an int option instead:

fun sum(x,y) =
let val s = x t y in

end ;
if s C 100 then SOME s else NONE

Modify the definition of sumlist accordingly so that it uses the new version of sum.
(Hint: modify the local function slist so that it returns an int option as well.)

