Part I

Total 61 points
$(4+6)$
1.
(a) Give an example of unambiguous CFG G which has two distinct derivations for some string in $L(G)$. Write those derivations, too.
(b) Give an example of ambiguous type-3 grammar. Show that it is really ambiguous. Write also an equivalent unambiguous type-3 grammar.
(6)
2. What is the language generated by each of the following grammars?

1) $\mathrm{G}_{1}=(\{S\},\{a, b\},\{S \rightarrow S S S S S|a b| b\}, S)$
2) $\mathrm{G}_{2}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{S} \rightarrow \mathrm{AbScA}|\varepsilon, \mathrm{A} \rightarrow \mathrm{aA}| \mathrm{bA} \mid \mathrm{a}\}, \mathrm{S})$
3. Construct a pushdown automaton with one state which accepts the language $\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ by empty stack.
(6+6)
4. What are the languages generated by the following grammars? Prove that they are ambiguous, and write an equivalent unambiguous grammar. 1) $\mathrm{G}_{1}=\left(\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}_{1}, \mathrm{~S}\right)$, where
$\mathrm{P}_{1}=\{\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{aA}|\mathrm{aC}, \mathrm{B} \rightarrow \mathrm{Bb}| \mathrm{Db}, \mathrm{C} \rightarrow \mathrm{Cb}|\varepsilon, \mathrm{D} \rightarrow \mathrm{aD}| \varepsilon\}$
2) $\quad \mathrm{G}_{2}=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{S} \rightarrow \mathrm{Sb}|\mathrm{aSb}| \mathrm{aaSb} \mid \varepsilon\}, \mathrm{S})$
(5)
5. Suppose that G is a CFG and that w, of length m, is in $L(G)$.
1) How many steps does a derivation of w in G take if G is in CNF?
2) How many steps does a derivation of w in G take if G is in GNF?
(3+4+5)
6. Write a context-free grammar for each of the following languages.
1) $\left\{b^{b w a w} \mathrm{R} a \mid w \in\{a, b\}^{*}\right\}$
2) $\left\{\right.$ aibick $\left.^{\text {i }} \mid \mathrm{i}<j+k, i, j, k \in \mathbb{N}\right\}$ with $V=\{S, X\}$
where the language of X is $\left\{\mathrm{a}^{\mathrm{m} b^{n} \mid \mathrm{m}}<\mathrm{n}, \mathrm{m}, \mathrm{n} \in \mathbb{N}\right\}$
3) $\left\{a^{m} b^{n} c^{p d q} \mid m+p=n+q, m, n, p, q \in \mathbb{N}\right\}$ (Read careffully.)
$(6+1+3)$
7. Let $L=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\}, L_{a}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=\left\{\left.w\right|_{b}+1\right\}\right.$, and $\mathrm{L}_{\mathrm{b}}=\left\{\left.w \in\{\mathrm{a}, \mathrm{b}\}^{*}| | w\right|_{b}=|w|_{a}+1\right\}$.
(1) Prove that if $x \in L_{a}$ and $x=$ by for some string y, then $y=w z$ for some strings $w, z \in L_{a}$, using Suf $=\left\{v \mid v\right.$ is a suffix of y and $\left.|v|_{a}>|v|_{b}+1\right\}$.
(2) If $x \in L$ and $x=b y$, what can you say about y ?
(3) Using (1), the corresponding result for L_{b}, and (2), find a CFG
generating L that has exactly three variables E, A, B, generating $L, L a$, and L_{b}, respectively.
