NAME

(8)

1. You may use %00 for the following computation.

(a) Using only clr, mov, add, and shift, write simple code to perform multiplication of the value in %10 by 0x862, ignoring any overflow that may occur. The result should be in %11. Do not change %10.

(b) Using only clr, mov, add, shift, and sub, write simple code to perform multiplication of the value in %10 by 0x3bc, ignoring any overflow that may occur. The result should be in %11. Do not change %10.

- (6) 2. Assume that we used our macros to allocate space for the following local variables. But do not use macros in your answer. char c: short d: char a: int b: Write the SPARC instruction to copy a value from %00 into each variable. (1) b. (2) c. (3) d. (2+2+2+5)3. Assume that we used our macros to allocate space for the following local variables. But do not use macros in your answer. struct test { char a: short b: char c: int d: char e: } char x; short y; int z; struct test v: struct test arr[10];
- (a) What is the align_of_test?
- (b) What is the size_of_test?
- (c) Using the frame pointer and an actual constant, write the address of v.e.
- (d) Write assembly code to do the following: arr[5].d = z;

4. Register %10 contains a negative integer. Write simple assembly code to change it to a multiple of 4 less than or eaqual to the current value.

(3x3)

- 5. Consider the 8-bit binary representation of integers using two's complement. Write the settings of the four integer condition code bits after each of the following computation.
- (a) a + b, where (b) a + b, where (c) a b, where a=0x20 and b=0xe0 $a=-2^7$ and $b=-(2^7-1)$ $a=2^6+1$ and $b=-(2^7-2)$

6.

(a) In a stack frame, four meaningful things are involved in general. List them from the top of stack with their sizes if known.

- (b) When we use 'save', the register window is changed. What do we use to go back to the previous window?
- (c) Suppose that we have 8 register sets (7 0). Currently CWP is pointing to register-set 5 and WIM is pointing to register-set 0.
- (c-1) After 'save' instruction, what are CWP and WIM pointing to?
- (c-2) After 'save' instruction, which registers of register-set 5 are we still using?
- (d) Suppose that we have 8 register sets (7 0). Currently CWP is pointing to register-set 0 and WIM is pointing to register-set 6. When window overflow occurs the next time without underflow occurring, which register-set's which registers' values go to the memory?

(5)

7. For the following integer array mapped in row major order: int ary[d1][d2][d3];

where d1, d2, and d3 are constants, write simple code to get the value of ary[i][j][k] into %10. Assume that the subscripts are in registers %i_r, %j_r, and %k_r, and the stack offset of ary is ary_s. You may use '.mul' here though in reality you shouldn't. You may use %00. Do not use other macros.

(6)

8. Using mulscc (without .mul), write code to perform signed 32-bit multiplication to produce 64 bits of result. The multiplicand is in %02, the multiplier is in %00, and the result should go to %01 (most significant word) and %00. You may indicate a repetition of a same instruction by the number of repetition.