## C SCI 113 INTRODUCTION TO COMPUTER ORGANIZATION Spring 2002

## **MIDTERM EXAMINATION 2**

| Name:   | April 11, 2002, 12:30 - 13:45 |
|---------|-------------------------------|
| I.D. No | Total: 40 points              |

Problem 1 (18 points)

Design a multi-functional counter, ABC, using JK flip-flops and combining the shift and count operations in a single sequential circuit. The count operation counts in the following counting sequence:

$$ABC = 000 \rightarrow 100 \rightarrow 110 \rightarrow 111 \rightarrow 011 \rightarrow 001 \rightarrow 010 \rightarrow 000 \text{ (repeat)}$$

The overall function table is given below:

| 51 | s() | Function     | Comment                                        |
|----|-----|--------------|------------------------------------------------|
| 0  | 0   | Clear        | not using Preset//Clear input of the flip-flop |
| U  | 1   | Count        | count in the above-given sequence              |
| 1  | 0   | Left rotate  | rotate left the code ABC in the counter        |
| 1  | 1   | Right rotate | rotate right the code ABC in the counter       |

(a) Write the state-transition table and design the excitation table applicable to JK flip-flops.

(b) Check the self-correcting property of the counter and derive the simplest expressions for the excitation signals for the count operation alone.

(c) Derive the simplest expressions for the excitation signals for the entire circuit combining the shift and count operations.

Your expressions should satisfy the following conditions for simplest implementation:

- use only basic logic gates selected from AND, OR, NAND, NOR, XOR, and XNOR without inverted inputs; the number of inputs per gate should not exceed 3;
- The inverted variables  $\overline{s_1}$  and  $\overline{s_0}$  are not available. A good solution should not use them at all. However, the inverted variables  $\overline{A}$ ,  $\overline{B}$ , and  $\overline{C}$  are available from the flip-flops.
- The total number of gates should be minimum, not exceeding 27.

## Problem 2 (15 points)

 $f_2$   $f_1$   $f_0$ 

Design a 4-bit ALU based on an SN74181 ALU chip according to the following function table:

| $f_2$ $f_1$                                                                                                                                                                                                                                          | 10 | Function of the ALU     | Meaning                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------|-------------------------------------------|--|--|--|--|
| 0 0                                                                                                                                                                                                                                                  | 0  | OP1 plus Cin            | transfer or increment                     |  |  |  |  |
| 0 0                                                                                                                                                                                                                                                  | 1  | OP1 plus OP2 plus Cin   | add without or with a carry               |  |  |  |  |
| 0 1                                                                                                                                                                                                                                                  | 0  | OP1 minus OP2 minus Cin | subtract without or with a borrow         |  |  |  |  |
| 0 1                                                                                                                                                                                                                                                  | 1  | OP2 minus OP1 minus Cin | inverse subtract without or with a borrow |  |  |  |  |
| 1 0                                                                                                                                                                                                                                                  | 0  | OP1 minus 1             | decrement by 1                            |  |  |  |  |
| 1 0                                                                                                                                                                                                                                                  | 1  | OP1 ∧ OP2               | OP1 AND OP2                               |  |  |  |  |
|                                                                                                                                                                                                                                                      |    | OP1 ∨ OP2               | OP1 OR OP2                                |  |  |  |  |
| 1 1                                                                                                                                                                                                                                                  | 1  | OP1 ⊕ OP2               | OP1 XOR OP2                               |  |  |  |  |
| (a) Design a truth table such that it will allow the simplest expressions to be derived in Part (b). Note: (1) The function tables of SN74181 are given on the back side of the previous page.  (2) Fill in the truth table in the following format: |    |                         |                                           |  |  |  |  |

(b) Derive the simplest expressions for all the dependent variables in the truth table. Your expressions must be maximally simplified for optimal implementation satisfying the following conditions:

share as many common terms as possible;

 $\overline{C_{-1}}$ 

M

s3

s2

sl

s0

Comments

В

Α

- use only 2-input basic gates selected from AND, OR, NAND, NOR, XOR and XNOR without inverted inputs;
- Only two inverted variables  $\overline{f_1}$  and  $\overline{f_0}$  are given, while all the other inverted variables,  $\overline{f_2}$ ,  $\overline{OP1}$ ,  $\overline{OP2}$ , and  $\overline{C_{in}}$ , are not available, so you should not use them;
- The total number of gates used by all the expressions must be minimum, not exceeding 8n+11, where n is the wordlength. (Continue on the back side of the previous page if necessary.)

| Fu | Function table for SN74181 when $M = 1$ |     |                           |                                         |               |       |       |            |                                                |
|----|-----------------------------------------|-----|---------------------------|-----------------------------------------|---------------|-------|-------|------------|------------------------------------------------|
|    |                                         |     | Operations $F_i(A_i,B_i)$ | Function table for SN74181 when $M = 0$ |               |       |       |            |                                                |
| 33 | 32                                      | - 1 | 0                         | 1 (((1,1))                              | Function code |       | ode   | Operations |                                                |
| 0  | 0                                       | 0   | 0                         | $\overline{A}_{l}$                      | 83            | $s_2$ | $s_1$ | $s_0$      | $F(A,B,C_{-1})$                                |
| 0  | 0                                       | 0   | 1                         | $\overline{A_i} \cdot \overline{B_i}$   | 0             | 0     | 0     | 0          | A plus C <sub>-1</sub>                         |
| 0  | _                                       | 1   | 0                         | $\overline{A_l} \cdot B_l$              | 0             | 0     | 0     | 1          | (A+B) plus C <sub>-1</sub>                     |
| 0  | 0                                       | 1   | 1                         | 0                                       | -0            | 0     | 1     | 0          | $(A+\overline{B})$ plus $C_{-1}$               |
| 0  | 1                                       | 0   | 0                         | $\overline{A_i} + \overline{B_i}$       | 0             | 0     | 1     | 1          | 111 plus C <sub>-1</sub>                       |
| 0  | 1                                       | 0   | 1                         | $\overline{B_l}$                        | 0             | 1     | 0     | 0          | A plus A $\overline{B}$ plus $\mathbb{C}_{-1}$ |
| 0  | 1                                       | 1   | 0                         | $A_i \oplus B_i$                        | 0             | 1     | 0     | 1          | (A+B) plus $A\overline{B}$ plus $C_{-1}$       |
| 0  | 1                                       | ì   | 1                         | $A_i, \overline{B_i}$                   | 0             | 1     | 1     | 0          | A minus B minus $\overline{C_{-1}}$            |
| 1  | 0                                       | 0   | 0                         | $\overline{A_i} + B_i$                  | 0             | 1     | 1     | 1          | $A\overline{B}$ plus 111 plus $C_{-1}$         |
| 1  | 0                                       | 0   | 1                         | A; $\oplus$ B;                          | 1             | 0     | 0     | 0          | A plus AB plus C <sub>-1</sub>                 |
| 1  | 0                                       | 1.  | 0                         | $B_i$                                   | 1             | 0     | 0     | 1          | A plus B plus C <sub>-1</sub>                  |
| 1  | 0                                       | 1   | 1                         | 4                                       | 1             | 0     | 1     | 0          | $(A+\widetilde{B})$ plus AB plus $C_{-1}$      |
| 1  | 1                                       | 0   | 0                         | $A_i \cdot B_i$                         | 1             | 0     | 1     | 1          | AB plus 111 plus C.1                           |
| 1  | 1                                       |     | 0                         | 4 . =                                   | 1             | 1     | 0     | 0          | A plus A plus C <sub>-1</sub>                  |
| 1  | Ţ                                       | 0   | 1                         | $A_i + \overline{B_i}$                  | 1             | 1     | 0     | 1          | (A+B) plus A plus C <sub>-1</sub>              |
| 1  | 1                                       | 1   | 0                         | $A_i + B_i$                             | 1             | 1     | 1     | 0          | $(A+\overline{B})$ plus A plus $C_1$           |
| 1  | 1                                       | 1   | I                         | $A_i$                                   | 1             | 1     | 1     | 1          | A plus 11I plus C_1                            |

Problem 3 (7 points)

(a) Design a 4-bit shifter attached to the output of an ALU according to the following function table:

| $h_1h_0$                                       | Function                                                   | Comment                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}$ | No shift External input Left logic shift Right logic shift | forward the ALU result, <b>F3-F0</b> , to the output of the shifter with no shift forward an external data, <b>I3-I0</b> , to the output of the shifter with no shift left shift the ALU result and a serial input, SIL, to the output of the shifter right shift the ALU result and a serial input, SIR, to the output of the shifter |

(a) Draw the circuit diagram of the shifter, using h<sub>1</sub>, h<sub>0</sub>, F3-F0, I3-I0, SIL, and SIR as inputs and  $OUT_3$ - $OUT_0$  as output.

(ii) Left rotate one bit

<sup>(</sup>b) The shifter constructed above can be used in different ways to perform different shift operations.ind cate in the above diagram how it can be connected to perform the following two operations:(i) Arithmetic right shift one bit